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THEORY OF A GYROVERTICAL CCHMEASS

A. Yu. Ishlinskiy (Kiav)

1. Below we will give a strict account of the theory of a
gyrovartical compass whcse senscr 1s a device siailar to the
so-called gyrosphera of the "pew Anschuetz® gyrcscopic compasses

[1, 23

This sensor can be considereéd to be a set ¢f two gyroscopes. The
axes of the housings of taese gyroscopes are parallel to each other,
wvhile their journal tearinys are rigidly fastened tc¢ the saae
framework, which will hercefcrth aiso be called the gyroscopic frame
or simply the gyroframe (Fige 1) In a two-gyrcsccpe compass, this
frams is surrounded Ly a spanerical shell and is submerged in a

ligquil, which provides extremely perfect susgension of the framework




poc = 0926 FAGE 2

with almost no frictior (Fig. <).

<

Fig. 1' ~ Fig. 2.

de will assume that tne csntar of suspension of the framework
moves over a certain sphere S with radius R which surrounds the
Earth, whila the force ct gravity cf the framework to the Earth is
reduced to the single fcrce F agplied to the center of gravity of the
framework (together wita the yyroscopes) and directed toward the

center of the sphere.

de will consider tkat the sphere S does not participate in the
Earth's rotation and its orientaticn relative tc stationary stars
does not change. In the future, the translaticnal motion of the
sphera is insignificant, since it takes rplace with vanishingly small

accalaeration., Tharefore, vwe can ccnsider the center of the sphere S

. L
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to be fixed.

As we will show later, it 1s very easy tc invaestigate the

movemant of the sensor relative to fixed sphere S [ 3].

de will disregard ths forces of friction in the suspensicn of

the frame itself and ir tne tearangs of the axes of the gyroscope
housings, as well as unavoidable assembly defects, e.g9., the presence
of axial and radial gars in tna tearings and residual inequilibrium

cf tha gyroscopes arcunc¢ the axes cf their hccsings.

de will assume that lixe fcr ths sensor ¢ a two-gyroscope
compass, a spacial gear draive (<¢r rour-ccmponent machanism) turns the
gyroscope housings relative to the framework to differant sides at

angles which can be considered tc ce equal (Fig. 1 and 2).

2. According to the pracession (sc-called elementary) theory of
gyrecscopic phenomena, weé will ccasader the tctal kinatic aoment H of
the entire gyroscopic framework to be equal tc the geometric sum of
the intrinsic kinetic mcments of the gyrcscopes B' and B", which have
the same values. We will use 2¢ tc designat2 the angle betwaeen the

axes of natural rotaticn of the gyroscopes (Fig. 1) . Then

H = 2Bcose (B-B':B') (1)
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Tha total kinetic scmant H is dirsected along the bissectrix of
angla 2¢. Becaus2 of the prusence of the aforementicped gear drive,

the vactor H does not ctangye pcsition ralative to the framewcrk.

de will bind coordinate systeas xyz with its origin in the center
¢f suspension to the frasmework, wich the y-axis dicectad vparallel to
the victor H, and the z-2xis parailel to tha axes of the gyrcscope
housings. The position cf the x—-axis is therety uniquely dafined

(Fig. 3).

de will use oy oy, w; tc designate the projections of the )
angular valocity of the framework relative to sphere S (or,

2quivalantly, r=2lative tc a ccurting system tcund to stationary

R
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stars) onto the axes of tais cocrdanate systam. The axpressicns

daf dH dH
- toli—wH, 4ol —od, r+el,—eHs (2)

are the projections of tke velocity of the &nd cf the vactor of the
kinetic moment of the gyroscCcpic trame H ontc¢ the x-, y- and z-axes,
with tha assumption that the oriyin of the vector is fixed. According
to th2 known th2orem of mechanics, these prcjections are aqual to the
sums of the moments of tke forces acting on the framework around the
same axas, respa2ctively. we will designate these sunms as H,, uﬁ,and

Mqe

The kinetic moment c¢f the rramework is directed along the

y-axis. Ther=fore,

H.=0, H,= H=2Bcose, H,=0.

As a result, w3 will nave the three equations:

—wH=M, F =M, w.H=M (@3

In the case in question, the gyroscopic framework is a
mechanical systeom with fcur degrees of freadom. Therefore, in order
to complately dascribe tta laws cf its mcvement, we should adad
ancther equation containing the grcjecticn of the angular velocity e

¢
+0o equations (3). For this purpcse, we willl pcint out that the

proj2ctions of the velccities ¢r the ends of the intrinsic kinetic
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poments of the gyroscores onto tha z-axis are expressed by the

formulas
“’va' — (.)uBz' = sz', Q;Bv” — (Iiva” == Mx” (4)

Here M3 and M, are the sums of the moments of the forc2s acting
cn th2 housings of aach c¢f tle yyroscopss arcund the axes of these
housings, and the values 8%, E;, E;, B; are the projections cf the
intrinsic kin=2tic momerts of the yyroscores cf the frame B' and B"

cnto the x- and y-axes, respectively. Obviously (Fig. 3)

< =—B;"= Bsine, B, =B, = Bcose (5)

According *o the fprecession {(elementary) thaory of gyroscopes,
only the intrinsic kinetic acments of the gyrosccpe rotors are
considered in ths equaticns ¢i ascvement c¢f the mechanical system. The
remaining kinetic moments and tne changes ceorresponding to them are
not considered. Thus, we should ccasider the forces directly applied
to tha framework to ke talanced ralativae to each other. In

particular, vwe will have

M,—M,' =M =0 (6)

Here *the moments -84 and -nj are the ccurteraction of the
gyroscope housings, to the axes cf which mcments M! and M7 are
aoplied by the framework. Substituting the exfrressions for mcmants M',

and NM" in relationship (¢) according to formulae (4) and considering
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equations (1) and (5), we will ayain obtair the third equaticn in

3).

Now we will formulate the difference of soments ¥} and 4% and

designate it as N. Acccrdiny to foraulae (4) and (5), we will have

N=M;,~M=—w,2Bsine (7

Moment N can be creéated o5 a special spring device (Pig. 2). In

this case, it is a function ¢r apgls ¢£.

Thus, th2 movement o0 tlks gyrcscopic frame is determined
according to relationshigs (3), (7), and formula (1) by the fcllowing

four aquations

—w;2Bcose = M,, wg2Bcose = M,

d g . ) , (8)
gicBeoss=M,, —oy2Bsine = ¥

3. It turns out tlat the parameters characterizing the
gyroscopic framework and, in particular, the form of tha dependence
cf moment N on angle &, can ke s<elected so that when the specified
initial conditions are satisfied, the z-axis will always be normal to
sphere S, as if the suspensicn gcint of the framework did not move

cver it.

In order to prove this intéresting thecram of theoretical
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mechanics, we should use eyuaticns (8) and explain the circumstances

under which they can be satiszied 1dentically.,

de will introduce a cartain acving coordinate systam E*q*c*,
whose origin is lccated at the suspension pcint of tha gyrosccpe,
while the E&*-, n*- and ¢*-axes are oriented tcward stationary stars.
Equations (8) are precisely tan2 eguations of rxovament of tha
gyroscopic framework relative tc tais cccrdinate system. Along with
the force cf gravity tc tne Earth's center and the reaction cf the
suspension, the forces acting on tne framewcrk should include the
forceas of inertia of its translaticnal mcvemernt, together with the
crcgr2ssively moving cccidinate system E#q*C%, The latter are reduced

to th2 single force ¢ apilisd tc tne center cf gravity of the

tr

framevork. The projscticns of tnis force onto the axes of cocrdinates
X, ¥ and z are:

Qe=—mws, Qy=—mw, Qi=—mw, 9)

dere m is the mass ¢f tte framework together with the housings
and rotors of its gyrosccpes, wy, .y and w, are the projecticns of
the acceleration of the suspensicn point of the framework as it moves

cver sphere S onto the axes ct the coordinate syst2m.

According to the known kinematic formulae (4]
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doy
We = = + Wy, — Wy 4

wy, = -Et—" + W — gy

dv,
w, = o~ + @y, — WyVx

where Vyo v%, v, are tte projecticans of the velocity of the

-
suspeasion point, and u,, Wys @, are the projections of the angular
velocity of the framswcrk 1tseli and, consegquently, also coordinate
systam x, Yy, z relative to sghere s. Since, by assumption, the
suspension point moves cver spnere S and th2 z-axis must be normal to
this sphere, (3]

vy = w, R, vy = — R, v, =0 (11)

Using formulae (9), (1) and (11), the projecticns of force Q
cnto *he axis of coordinate system xyz can nov ke represented as
= dw, dw )
¢ =—mR(Z¥tom), Q=—mR(—5% 4 uu,)
O:=—mR(—al—ul) . (12)

——

Let the center of gravity cr tha framework be located on the
negativa part of the z-axis at a distance 2 frcom the suspension
point, In this case, tkte force c¢f gravity is directed along the

z-axis and, therefore, i1ts acm=nt relative to the suspansion point is

eaqual to zero. The same is true cof the component of the force of

inertia of translational motiou and the forca cf the coupling I
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reaction. Therefore, it surficas tc find the moments of forces Q, and
Q? r2lative to the x-, y- and z-agas in crder to da2termine mcments

My, My and M,. As a ra3sulc, we oftain the exgressions

M,=19Q, M,=—IiQ,, M:=0 (13)

Substituting these expressicns in equaticns (3) and considering

formula (11), we obtain tae fcllcwing equaticrs:

— ;2B cose = mlR ('i:—:’-‘ — m;,w:) , ws2Bcose =0
. (14)
d

5 (2Beose) =miR(S¥ +aw)  —w,2Bsine=N

4hich must be satisfied identicaily.

According to the third exgprassion (if we do not consider the

exceptional case when & = 1l/,»), we will have

ws =0 (15)

Yow it is not hard to sea tisat the first two 2quations cf (14)

ire satisfiad if tha ccandition

2Bcoss =H =mlRw, (16)

S Vemasy,

is observed.

Using this conditicn to elisinate the value w, from the fourth

.4

egquation of (14), wa arrive at ths relationship

Na—%cosasinc - (17),
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which detesrmines tha unkpown iIorm of th2 dependence ¢f moment ¥ on

angle £,

Relationships (11), (15), (lo) and (17) make it possible to
sxplain what the initial condatacas of the mcvement of *the gyroscopic
frame must be in crder fcr tte described movement to be possiblse.
According to relationship (15) and the second fcrmula in {11), vwe

will have

vy =0 (18)

Therefore, at the irivial gcint in time, the x—-axis, which is
bound to tha gyroscopic frame, musct be directed along the tangent to

the trajectory of the susgsnsicr pcint during its aovement over

sphers § (FPig. 4). Tha x2-axis will only be tangent to the above
trajactory at all timas wnen the raemaining initial conditions, which

will be explained belcow, ar¢ alsc satisfiad.
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Fige 4.

According *o the first formula in (11) and relationships (15)

and (16), we obtain the eguaticno

2B cos e = mlv ’ (19)

wh2re v is tha velocity ¢f the rframevork's suspension point relative
to sphere S. Therefore, i1f the susgension pcipt was vy, at the initial
point in time, the ipnitial value or angla €5 shoull be datermined by
the foramula
cosey = ¢ (20)
In the future, based on the sacond equation of (14) and
relationship (15), forsula (1Y) reasains valid throughout the time of

sovem2nt Aduring random scveaent c¢f the suspensicn peint. Pinally, at

the initial point in time tne z-axis, which is parallel to the axes
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of tha gyroscope housirgs, saculd oe normal to sphare S. When these
conditions are satisfied, accordiny to relaticnship (17), moment N
vill be such that on thke ovasis c¢r the fourth equation in (14), the
angular velocity component ot tne framswork Wy datarmined by it

sa*isfias the first equatioo i1n (11).

At *he initial point in tige, if conditicns (18) and (20) are
satisfi2d with a small error and tne z-axis is deflected from the
normal “o the surface c¢f S oy a small angle, the movement cf the
framevork can be examined oy stuayang small oscillations around
rovamant during which the 1nitcial conditions ar2 satisfied precisely.

92 will return to this groolew in ;6.

4, Now we will tuir our atteéation tc studying the sovement of
th2 gyroframe relative tc tne Eartb, considering it to be a sphere
with radius R and considerinyg that all of the conditions in §3 are

satisfiad precisely.

de will introduce the mcving coordinate systen ch, the &-axis
of which is directed alcny tha tangent tc the parallel to the east,
the q—axis - along the tangent tc the meridiar t¢ the north, and the
¢~axis along the Barth's radius upward. We will place the origin of

coordinates at the frameworx susgension point.




pocC = 0926 EAGE 14

de will usa U to designate taa Earth's angular velocity, ¢ - the
latitude of the locaticn (strictly speaking, geocentric), and Vg and
Vy - the 2astern and ncrtnezn ccagcnents of thz velccity of the
origin of systan €7§ relative tc the Earth. The projections of the
valocity cf this point relative tc sphere S onto the &- and 77-axes
ar? rapresantad as fcllces:

v;=VE+URcos?, v.,‘=V~ (21)

Now, using formula (11), aftar first replacing the letters x and
Y in them by & and %, respectively, we oktain the known fornmulae
4
(22)
for the projections of tkhe angular velocity of the triangle E?C
relative to coordinate systen é*ntgt, which is c¢rianted according to

stationary stars. As we know, the projection c¢f tha above angular

valocity onto the §-axis 1s e€xpressed by the fcrmula [1)]

1’4
ug= Ftge+ Using (23)

e will use 3 to designate the angle between the y- and M-axes,
counting the positive diracticn cf this angle as is shown in Fig. 5.

I+ is not hard %o see ttat here tne projecticns of the angular
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valccity of coordinata system xyz, which is btcund to the gyrcfranme,
cnto the x-, y- and z-axes pas tita form:

. de
Wy = Ugcos & — u,sin @, my=ugsln3+ua00$9. Wy = Uz — g7 (24)

According to th2 laws cf movement of the gyroframe given in §3,
we must plug wxy = 0 intc the rirst of these fcrmulaas. Furtharmore, if
we replace the valu2s uy, and u» 210 them Ly their representation

according to formulae ({(zz), we will have

Vn
tgd=— RUcose+ Vg

(29)

Thus, the y-axis, which is bound to the gyroframe, is deflected

! from the direction to the nortb Lty angla 9, which is determined by

formula (25). This agrees witn tne known formula for tha so-called

velocity deviation of a yyroscopic compass.
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Now we will direct our attertion to the relaticnship (19)
betwean the kinetic moment of the gyroframe and the rata of movement
cf its suspansion point cver sposre¢ S. Ccansidering formulae (21) and

{1), this ralationship can pe regrusent2d! as follows:

H = 2Bcoss = mlY (RUcosg + V)i + V5? (26)

Footnota: 1This very relaticnsalp wWwas obtained earlier by V. G.
Zhelaznov when refining tne known Schuler ccndition H = mZRU cos¢ in
the approximate theory c¢f yyrcsccpic compasses. When the Schuler
condition is satisfied wica a cercain degree c¢f approximation, the

deviation of the gyrcscofpic ccmpass does not deperd on tha fcrmer

values of the velocity ¢£f tne saip and its acceleration, but is
mainly determined by fcraula (<5). Other researchers (E. I. Sliv, Ya.
N. Roytenberg) refined tke Schuler condition (fcr the case of high

latitudes) by considerirg only cne eastern compcnent of the velocity

of *h2 ship Vg, and it was regresented in the fcra

H = m31(RU cos# + Vg). End fcctanctae

Tha above informaticn shows taat relaticnship (26) acutally

proviles precise adherenca of thne deviation c¢f the gyroscopic compass

e cee e - et g il

E T
s YD SR
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to law (25), as long as tne dependence of the mcment N on the angle ¢

in formula (17) is satisfidd aud, rurthermore, the initial conditicns
in §3 are observed. We will pcint cut that in this case, tha z-axis,
which bound to the gyrcscopic rramevork, is directed tovards the
center of the Earth. Ttererore, 1t forms a certain small angle with

the vertical which depends cn tke latitude cf the lccation.

5. We will construct tite varocux triangle x0y%920 with the apex

at tha suspension point ¢rf the gyrcframe. We will direct its x%-axis
aleng the velocity vectcr of tneé suspension pcint of tha framevork

r2lative to sphere S and tna 29%9-axis normal tc the sphera, Here tha
direction of the y9%-azxis is coaplately defined. If the initial {
conditions of tha movement of the gyroframe givenm in §3 are cbserved,
the x-, y- and z-axes, whicn are bcund tc¢ the gyroframe, will always
coincide with the x9-, 59 and z%-axes during random moveament of the

triangla over surface S.

#e will considar the general case of the initial conditicns of
tha gyroframe, and ve will ccostruct the equaticns of its movement

relativ2 to triangle x9yozo,

#e will define the fpositicn o coordinate system xyz rslative to ?

triangyle x9y020 as shown ian PFPiy. 6 and 7 by the three angles a, f and

]
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y. Angle a deternines tne rotaticn around the z-axis, which ccincides
with the z9%-axis of auxiliary coorainate system x'y'z*' relative to
systea x0y9z0, In turn, aangle g is the angle c¢f rotation around the
x"-axis (or, analogously, the x'-axis) of the other auxiliary
coordinate system x™y"2" relative to the first, i.2., the systea

x'y'z*. Pinally, angle y i1s tna angle of rotaticn arcund the y-axis

{it 15 also the y"-axis) cf coordinate system xyz relative tc systea
x"y"z"., The table of ccsines c¢r tvha angles tetwean ccordinate systeams

xyz and x9y9%29 is:

x0 Vo 0
x CosacoOsY=alnesin OlNY . éinecosy +cossoinfeiny —cospsiny
. —sinacos g cos « cos § stn B (27)
z cosefinY +aiBesinBfoodY sin « 8D Y — cOs &« 8I10 8 CO8 Y 008 § cos

In order to obtain tne projection of the angular velocity of

cocrdinate systam xyz cato 1ts saaé axes, we shculd take the sum of

B N L )
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the projections of the angyular velccity of triangle x9y09z9 onto these
axes, as wall as the relative angyular velocities: dasdt of ccordinataz
systaa x'y*z' relative t¢ x0y9z9, apg/dt - of system x"y"z" relative
o x'y*z' and, finally dj/dt cf cocrdinate system xyz relative to

systam x"y"z".

The angular velccity vector da/dt is directed along the z%-axis,
and the angular velocity vector dy,dt - along the y"-axis. In turn,
th2 aagular velocity vector dgs/atr 1s in the same direction as the
x*-axis. The x'-axis, which ccincides with the x"~-axis, is the
intersection of the cocrdinate glanes x%y% and zx. It forams angles 7,
1/, and 1/,m - 7y, respectavely, with the axes cf the coordinate

systen.

Considering these circumstances and the cosine table (27), we
arrive at the following e€xpressicans for the unknovn projecticms:
Wy = W (cosacos 7 —sinasinfsiny) 4 wy® (sinacosy 4 cosasinPsiny) 4
+ (u,.o + ‘T‘:)(—cospssn D+ % cosy (28)

wy == Wz¥(—sin « co3P)+ wPcosacosf + (u,." + %:—) sinf + %
w; = w0 (cosasiny + sin asin B cos 1) 4+ w,® (sin asin y — cos asin Bcos 1) +

+(u,.'+ :‘—')cospcosy+ :—fsiny

Here s, o and w.° designace the projections of the angular

velocity of triangle x0y920 cptc its intrinsic axis. According to
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formsula (11), we will have

L A 0.0
wped = — Wy = —gr (29)

where v7#® and . are the projecticns of the velccity of the apex of

trianjla x9y0z9 onto its x9- ang y9-axzs, Hecwever,

v, 0 =0 (30)

sinca the valocity of tne apex cf the triangle, by assumpticn, is
directed along the x9%-axis, Ccnsjdering forsula {29) and equation
{30), according to expressicns (<8) we obtain the following formulae
for tae projections of the angyular valocity of the gyroframe to thz

axes bound to it:
. d
u;-—i—(sinccos'g + cosasinBsinT) +(u+%) ("'cosﬂsm'r)-i-?‘:—cosy
L 'm,a%cosacosﬁ+(u+%)sinp +£d'!‘- (31)

| dg .
. w, = —‘—;- (sin @ sin y—cos « sin 8 cos y)+ (u + %'-:—)cospcosx + Te-sm'(

In these formulaa

v = vgd, b = wp? . (32)

vl SIRNERRR

are the velocity of the apex cf tae triangle relative to sphere S5 and
its angular valocity ccajonent alcng the normal to this sphere,

respactively. Formulae (31) saould be plugged into the left sides of

equations (18) of the wmcvemsent ¢i the gyroscopic framework.
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Now we vill calculate the riynt sides of theses sama equations.
According to the assumrtion made in §3, the fcrce of gravity F of the
gyroscopic framework tc tne Barth is directed to the center of sphere
S and applied to the centyr ¢ gravity of the framework. With a high
dejrea of precisijion we c&n ccasider it tc¢ be fparallel to the z9-axis.
Then, according to the ccsine tasnlae (27), its projactions onto the
x-, y- and z-axes, which are tound to the gyrcframe, are represented
ty th3a axrpressions

Fy = FcosfsinT, ¥y = —FsinB. F, = — FcosBcosy (33)

In order to calculate similar projecticns cf the force of
inertia Q of the translaticnai mcvement (see §3), ve should first use
formulae (12), representing taaam, with consideration of equations

(29), (30) and (32), as

¥
on = —”l—:—:i ’ Qy‘ = — mwy, Ql' =m T (34)

de will point out that formsulae (3%) can also be obtained

indiractly, if ve consider that the expressions

w:=;?, w,-%, w,,a—-;- (35)
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are projections of the acceleraticn of a point moving over a sphere
cn tha axis of the Darkcux triaagls bound to the trajectory cf this
point. dera we must consider that the radius cf geophysical curvature
ct the trajectory Pae the angular rotation rate w of tha Darboux
triangls around the noraal tc theé sphere (arcund the z0-axis), and

the valocity of its apex v are ccanect2d by the relationship

Using formulae (34) and the ccsine table (27), we obtain the
following expr2ssions fcr the prcjections of the force of inertia Q

on*o tha x-, y- and z-axes, whick are bound tc¢ the gyrofranme:

d . . ‘.
Q,=-—m?‘3(cos cos 7 —sinasinfsiny) —

— mwo (sinacosy + cosasinPsiny) 4 M%(—cosﬁsiny) (37)

d .
Q,= —m—dit'-,(—smacosﬁ)—mvcosacosp+ m%sinﬁ

Q:= —m% (cosa siny 4 sin asin B cosT) —

— mwy (sinasiny — cosasinfcosy) + m-% cosfcost

In coordinate system xyz, the centar of gravity of the

gyroscopic framewvork has the following ccordirates: z.=y. =0, zz=—1

Therefore, the unkrccwn mcaents M, My, Mq{ of the forces

actiag on the gyroscopic framsecrk can be represented by the formulae
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(38)

M =1(Fu+Q)+ M, My=—I1(Fi+ Q)+ M, M, =M

where ;l;, M, M, are tne moments of any cther forces (besides the
forcas of gravity and iperctia) which ara also applied to the

gyroscopic framework relative tc tane x-, y- and z-axes,

As for the reacticn forcss ctf the suspension point of the
framework or the forces c¢f the gr3ssure c¢f the fluid on the
gyrosphare (for a "Kurs" ctype Jyrcscopic compass), their moments
relative to the x-, y- ard z-axes are all equal to zero. Replacing
the vilues Fe Fy, Qy ana cw in rormulae (38) by the expressions

according to equations (33) and (37), we will have

M, = l[—m%(—- sinacosp)-—-nunvcosacosﬁ+(m%—F)sin ﬁ]-{-M;
M,= —l[—m %(cosa cos { — sin a sin 8 sin 1) —) (39)
— mwv (sin @ cos 7+ cosa sin siny) + (m%;— F)(—- cos B sinT)] + M,

4"1=M;

Like (31), these exfressicns should be fplugged into equations

(14) ., As a result, we citain the fcllowing equaticns of the zovement

of th2 gyroscopic framewcrk ralative to the Darboux triangle:

s

e ———

e ey
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—[—i';—(sinasin-;—cosasinﬁcos'f)+(m+-‘;%)cosﬁcos'f-;-
+ %?—sin 1;| ZBcosz=ml%:—sinacosﬁ—mlmvcosacos'p +
+(ml%——ll")sinﬁ+ M
'Ed'{ 2Bcose = ml%(cosacos-g—ainasin Bsiny) 4+ mlwy (sinacosy +
+cosasinﬁsiu-r)+(ml—"};-—lF)cosﬁsin1+M;
[-R-"—(sinacosT+cosasinﬂsin1)—(:u+%)c%ﬂsin7+

+ ‘—;% cos'y] 2Bcoss = M; (40)

-_[-;— cosacosﬁ-@-(mi- %:—)sinﬁ+%]235in‘=1v(')

Zquations (40) are valid fcr any gyroscopic framework.

Pur+tharmora, if we set

in them, and if ve use fcrmula (17) for moment N(g) , they will be
r2latad to the mcvement cf cur special gyroframe, the proparties of
which are given in §3. In this case, as cne wculd expect, =quations

(45) are satisfied precisely, if we set

Ry - (42)

in them and if we find angle ¢ ricm relationship (19).
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In this case, functions v = v(t) and w = w(t), which give the
poverant of the suspensicn pciant of the gyroframe over surface S, can
be completely arbitrary. shen relationships (42) and (19) are
satisfiad, the gyroscoric framescr« moves as was described in §§3 and
4. That is to say, the kinetic scment of the framework, which is in
the Jdirsction of th2 y-axis, remains perpendicular to the velocity
vactor of the suspansicn point rglative to spher2 S during any
provemant of this point. The z-axis, which is rarallel to the axas of
the housings of the gyroscope tramewvorks, continuously passas through

the canter of the sphere.

6. Equation (40) of the moveasnt of tha gyroscopic framework
around the axas x9y9z0 c¢f the Darccux triangle, which is bound to the
trajectory of movement ¢t the suspension point, is tco complex for
studying the movement cf tne rramework in the most general case.
Therefore, we will limit oursselves to studying small movements of the
frameworX relative tc¢ tnis triangls. On the tasis of this, we will
retain only the first-crcéer tarss relative to angles a, p and y and

their time derivatives in equaticans (40) .

Keeping equations (41) and formula (17) in mind, we will have
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_("‘_‘“‘i_—%p+u)2Bcose=l[m%—a—(l~‘—m%>ﬂ—m]

;‘—(2Bcose) =I[mvm——(l"—m%)‘!+m%]

(& + Fa—wr)2Beose=0 (43)
_(%+_1';_ +uB)ZBsint = — %cosuinc

Thase equations shculd ke ccnsider=2d tc ke the equations of the
disturbed movement of the yyroscope framework relative to the initial
povemant, during which tt2 angles o, B, v and £ are determined by
ralationships (42) ard (19). Suosequently designating angle £ of the

undisturb2d movament as g%, in eyguations (43) wve will have

s=e0438 (4&)
vheras 6 is a small value of the same order of magnitude as angles a,
B and y. Preserving the first-crder torms already related to all four

angles a, B, v and y in eyuations (43), and ccnsidering that

according to condition (19), we saculd set

2Bcose® = mly (45)

@4e arrive at the system cf aguaticns of the disturbed movemant of the

gyroscope framework
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d d o an
—mlu-ai:- —mld—:’¢+li‘ﬁ = — wlB sin % (46)
dfs dy 2B sin ¢°
@I T Ee=on @ T g =P

—

&la -

(2B sin e%) 4- l(F— m—;;)'g = wmlivx

If the velocity of tne suspension pcint cf the gyroscope
framework v and angular vaiocity « of the Dartoux triangla arcund the
normal Lo sphere S are ccastant, system (46) will become a
homog aneous systam of linsar ditfferential aquaticns with constant

coefficients. Approximately assusing that

F—I% =~ F=mg (47

wvhara g is the acceleration of the force of gravity, we arrive at the

charactaristic equation cf systes (46), the rcots of which ars

Fi(v+ w), Fi(v—w) (48)

Here “v=V3R is the frayuency corresponding to the Schuler

‘ : reriod

T =2V Rjg (49)

¢ According to the approximate theory of a threa-dimensional

} gyrocompass proposed by Gekkeler [2], in this case two

noninterrelated oscillations, ¢acn of which has a Schuler pericd,
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should take place: the first i1s related to variablazs « and B, and the
sacond - to variablas ¢y and 6. Ihe above information shows that the
Gakkaler theory contains significant inaccuracies, although it
genarally leads *to correct relaticaships of type (17) and (19) for
salecting the characteristic parameters c¢f the gyrocompass sensor,
wvhcsa plane xy remains herizcntél (according to Gakkeler - almost

herizontal) during any maneuvers c¢f the ship.

If approximat2 fcraula (47) remains valid, system of aquatioms
(46) can also be integrated witp variable values of v and w, i.=2.,

during arbitrary movement of the suspension pcint over spher= s.

Actually, using egquations (47) and (48), equations (46) can be

rerresanted as

d ova 2B sin 8 a8 o 50

TyR—B=o vk @ T Ve -V ©0)
dy 2B sine P i(ZBsinc" 8)— = —w
ot @R T T TR

Now we will introduca two new complax-valued functions c¢f the

real argument t according to the formulae

e , . 2D sin ¢°3
'(1)=7§-+1ﬂ. P(‘)=T—‘-’;‘—7‘-—R (o1)

Then, as it is easy to sea, system of equations (50) can be

: - SR, C—— . Bt v e KRR 2ir i 4
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replaced by the system ¢f two eguations

dx . . du L
-dT+lvx-lwp. E-'I'IVP—“N‘

This system, in tcrp, 1s orcken down intc twec independent

equations
L etp) i =)+ 1) =0

2 w—m) +il+o)(x—p) =0 (53)
vhich are immediately integrated. we will have
t
Xx+p =(xo+p°)exp(— iS(v—-u)dt)
0
!
X —p =(x°_p°)exp(— i&(v-{-u)dl) (94)
[ .

vhere %y and ug are the inatial values of functions w(t) and u(t) at

point in time t = 0.

Using formulae (54) and (S1), it is already easy to also

represent the unkpown varionles a, £, y and § in explicit fora as

functions of their initial values ogs Pae Yae 8o and time t.

¢ With respect to variables ow/)gR, B, v and 2B sin «/mlYgR, where,

: according to relationshifp (45), &° is determined by tha formula

sin «° 'l/ 1-—(%;-)', (55)

13
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system of equations (50) 1is reduced to a system of linear

differential equations with ccnstant coefficients, as long as the

angular valocity w is ccrstant. Ine latter is expressed by the

formula

Ve d
uaUsincp-}-—R"—tgq;—d—'f (56)

where Y is the true course of the ship, i.e, the angle between its

valocity vactor (to be acre fprecise, tha velccity of the susgensicn
point of the framework) and the meridian of the location counted

clockwise from the direction to tne north.

7. The above theory of swmall movements of the gyroscope
framework around the mcpile axes of the Darboux triangle related to
the trajectory of the suspensicr pcint leads to nonattenuating
oscillations., The problex of the strict substantiation of the
stability of undisturbed sovement aefined by nonlinear equations (40)

raquires additional study, cf ccurse,

Tha introduction cf acteauation similar to that used in ordinary
twc~gyroscope compasses into the mechanical system of the gyrofranme
lsads to the manifastaticn of pallistic deviations, i.e., additional
deviations of the variatles a, f, 7 and 6§ caused by the law of the

chang3 in the acceleratica cf the suspension foint during its
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movenant over sphere S. 1he estisation of these deviations also
raquires special consideraviocn. Finally, in the future it will be
important to determine tke distcrtions introduced into the movements
cf the gyroscope framewcrx in gyuestion by the difference of the

Barth's shape from a sgpaneéra.

teceived 10 March 1956
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